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We numerically study the quantum Hall effect �QHE� in bilayer graphene based on tight-binding model in
the presence of disorder. Two distinct QHE regimes are identified in the full energy band separated by a critical
region with nonquantized Hall Effect. The Hall conductivity around the band center �Dirac point� shows an
anomalous quantization proportional to the valley degeneracy, but the �=0 plateau is markedly absent, which
is in agreement with experimental observation. In the presence of disorder, the Hall plateaus can be destroyed
through the float-up of extended levels toward the band center and higher plateaus disappear first. The central
two plateaus around the band center are most robust against disorder scattering, which is separated by a small
critical region in between near the Dirac point. The longitudinal conductance around the Dirac point is shown
to be nearly a constant in a range of disorder strength, until the last two QHE plateaus completely collapse.
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I. INTRODUCTION

Since the experimental discovery of an unusual half-
integer quantum Hall effect �QHE�1,2 in monolayer graphene,
the electronic transport properties of graphene related mate-
rials have been extensively studied.3–13 Recently, bilayer
graphene is found to show an anomalous behavior in its
spectral and transport properties, which has attracted much
experimental and theoretical interest. Theoretical studies4,5

show that interlayer coupling modifies the intralayer relativ-
istic spectrum to yield a quasiparticle spectrum with a para-
bolic energy dispersion, which implies that the quasiparticles
in bilayer graphene cannot be treated as massless but have a
finite mass. Experiments have shown that bilayer graphene
exhibits an unconventional integer QHE.6 The Landau level
�LL� quantization results in plateaus of Hall conductivity at
integer positions proportional to the valley degeneracy, but
the plateau at zero energy is markedly absent. The unconven-
tional QHE behavior derives from the coupling between the
two graphene layers. The quasiparticles in bilayer graphene
are chiral and carry a Berry phase 2�, which strongly affects
their quantum dynamics. However, a detailed theoretical un-
derstanding of the unconventional properties of the QHE in
bilayer graphene taking into account of the full band struc-
ture and disorder effect is still lacking. As established for a
single-layer graphene13 and conventional quantum Hall
systems,14 the QHE phase diagram in such a system is cru-
cially depending on the topological properties of the full en-
ergy band, and thus can be naturally determined in the band
model calculations.

In this work, we carry out a numerical study of the QHE
in bilayer graphene in the presence of disorder based upon a
tight-binding model. We reveal that the experimentally ob-
served unconventional QHE plateaus emerge near the band
center, while the conventional QHE plateaus appear near the
band edges. The unconventional ones are found to be much
more stable to disorder scattering than the conventional ones
near the band edges. We further investigate the quantum
phase transition and obtain the phase boundaries Wc for dif-
ferent QHE states to insulator transition by calculating the
Thouless number.15 Our results show that the unconventional

QHE plateaus can be destroyed at strong disorder �or weak
magnetic field� through the float-up of extended levels to-
ward the band center and higher plateaus always disappear
first. While the �= �2 QHE states are most stable, the Dirac
point at the band center separating these two QHE states
remains critical with a nearly constant longitudinal conduc-
tance.

This paper is organized as follows. In Sec. II, we present
the model Hamiltonian. In Sec. III, numerical results based
on exact diagonalization and transport calculations are pre-
sented. The final section contains a summary.

II. TIGHT-BINDING MODEL OF BILAYER GRAPHENE

We consider the bilayer graphene composed of two
coupled hexagonal lattice including inequivalent sublattices

A, B on the bottom layer and Ã, B̃ on the top layer. The two
layers are arranged in the AB �Bernal� stacking,16,17 as

shown in Fig. 1, where B atoms are located directly below Ã
atoms, and A atoms are the centers of the hexagons in the

other layer. The unit cell contains four atoms A, B, Ã, and B̃,
and the Brillouin zone is identical with that of monolayer
graphene. Here, the in-plane nearest-neighbor hopping inte-

gral between A and B atoms or between Ã and B̃ atoms is

FIG. 1. Schematic of bilayer graphene lattice with AB �Bernal�
stacking. Bonds in the bottom layer �A ,B� are indicated by solid

lines and in the top layer �Ã , B̃� by dash lines. A unit cell contains

four atoms: A �white circles�, B̃ �gray�, and ÃB dimer �solid�.
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denoted by �AB=�ÃB̃=�0. For the interlayer coupling, we
take into account the largest hopping integral between B and

Ã atoms �ÃB=�1, and the smaller hopping integral between A

and B̃ atoms �AB̃=�3. The values of these hopping integrals
are estimated to be �0=3.16 eV,18 �1=0.39 eV,19 and �3
=0.315 eV.20

We assume that each monolayer graphene has totally Ly
zigzag chains with Lx atomic sites on each chain.13 The size
of the sample will be denoted as N=Lx�Ly �Lz, where Lz
=2 is the number of monolayer graphene planes along the z
direction. In the presence of an applied magnetic field per-
pendicular to the plane of the bilayer graphene, the lattice
model in real space can be written in the tight-binding form

H = − �0�
�ij�

eiaij�ci
†cj + c̃i

†c̃j�

+ �− �1�
�ij�1

eiaijcjB
† c̃iÃ − �3�

�ij�3

eiaijciA
† c̃jB̃ + h.c.�

+ �
i

wi�ci
†ci + c̃i

†c̃i� , �1�

where ci
†�ciA

† �, cj
†�cjB

† � are creating operators on A and B sub-
lattices in the bottom layer, and c̃i

†�c̃
iÃ

† �, c̃j
†�c̃

jB̃

† � are creating

operators on Ã and B̃ sublattices in the top layer. The sum
��ij� denotes the intralayer nearest-neighbor hopping in both
layers, ��ij�1

stands for interlayer hopping between the B sub-

lattice in the bottom layer and the Ã sublattice in the top
layer, and ��ij�3

stands for the interlayer hopping between the

A sublattice in the bottom layer and the B̃ sublattice in the
top layer, as described above. wi is a random disorder poten-
tial uniformly distributed in the interval wi� �
−W /2,W /2	�0. The magnetic flux per hexagon �=�

˝

aij
=2� /M, with M an integer. The total flux through the
sample is N�� /2��, where N=LxLy /M is taken to be an in-
teger. When M is commensurate with Lx or Ly, the magnetic
periodic boundary conditions are reduced to the ordinary pe-
riodic boundary conditions.

III. RESULTS AND DISCUSSION

The eigenstates 
�� and eigenenergies 	� of the system are
obtained through exact diagonalization of the Hamiltonian
equation �1�, and the Hall conductivity 
xy is calculated by
using the Kubo formula


xy =
ie2�

S
�
�,�

��
Vx
����
Vy
�� − h.c.

�	� − 	��2 ,

where S is the area of the sample, Vx and Vy are the velocity
operators. In Fig. 2�a�, the Hall conductivity 
xy and electron
density of states are plotted as functions of electron Fermi
energy Ef for a clean sample �W=0� at system size N=96
�24�2 with magnetic flux �=2� /48, which illustrates the
overall picture of the QHE in the full energy band.

At zero magnetic field, there are four valley-degenerate
bands:4 the low-energy bands that touch at the Dirac point
�L�, and the high-energy bands �H�. In the following, we use

the notation L, H to represent these bands, respectively. From
the electron density of states in Fig. 2�a�, we can see the
discrete LLs from both low and high bands, which is in
agreement with those of Ref. 21. We mention that LLs are
symmetric about zero energy and will mainly present results
in the positive energy region. We denote the central LL at
Ef =0 the n=0 LL, the ones just above it are the n=1 LL
�both from L band�, n=0 LL �from H band�, and so on. We
mention that the first gap of the bands appear at Ef =0.45�0,
and the level spacing between n=1 LL �L� and n=0 LL �H�
is much small than LL spacing due to the strong magnetic
field.

According to the behavior of 
xy, the energy band is natu-
rally divided into three different regimes. Around the band
center, the Hall conductivity is quantized as 
xy =�e2 /h,
where �=kgs with k an integer and gs=2 for each LL due to
double-valley degeneracy4,13 �the spin degeneracy will con-
tribute an additional factor 2, which is omitted here�. With
each additional LL being occupied, the total Hall conductiv-
ity is increased by gse

2 /h. This is an invariant as long as the
states between the n-th and �n−1�-th LL are localized. 
xy
=0 at the particle-hole symmetric point Ef =0, which corre-
sponds to the half-filling of the central LL. However, there is
no 
xy =0 quantized Hall plateau. These anomalously quan-
tized Hall plateaus agree with the results observed experi-
mentally in bilayer graphene.6

The Hall conductivity near the band edges, however, is
quantized as 
xy =ke2 /h with k an integer, as in the conven-
tional QHE systems. Remarkably, around Ef = ��0 �within a
narrow energy region E�0.4�0�, there are two critical re-
gions that separate the unconventional and conventional
QHE states, where the Hall conductance quantization is lost.
These crossover regions also correspond to a transport re-
gime, where the Hall resistance changes sign and the longi-

FIG. 2. �Color online� �a� Calculated Hall conductivity and elec-
tron density of states in the full energy band for magnetic flux �
=2� /48 or M =48, and �b� the Hall conductivity near the band
center for �=2� /12, 2� /24, and 2� /48. The disorder strength is
set to W=0 and N=96�24�2 in all cases. Inset: Hall conductivity
at the band center. Here, the spin degrees of freedom are omitted, so
gs=2 and gs=1 for the unconventional and conventional regions,
respectively.
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tudinal conductivity exhibits metallic behavior. The singular
behavior of the Hall conductivity in the crossover regions is
likely to originate from the Van Hove singularity in the elec-
tron density of states at B=0 limit. In Fig. 2�b�, the quanti-
zation rule of the Hall conductivity in this unconventional
region for three different strengths of magnetic flux is shown.
With decreasing magnetic flux from �=2� /12 to 2� /48,
more quantized Hall plateaus emerge following the same
quantization rule as the gap between the LLs is reduced.

Now we study the effect of random disorder on the un-
conventional QHE in bilayer graphene. In Fig. 3, the Hall
conductivity around the band center is shown as a function
of Ef for four different disorder strengths at system size N
=96�24�2 with magnetic flux �=2� /48. We can see that
the plateaus with �= �10, �6 and �2 remain well quan-
tized at W=0.5. We mention that the �= �4, �8 plateaus
are unclear at this relatively weak disorder strength because
of very small plateau widths and relatively large localization
lengths �the critical Wc for each plateau will be obtained
based on our larger size calculations of the Thouless number
as presented later�. With increasing W, higher Hall plateaus
�with larger 
�
� are destroyed first. At W=2.0, only the �
= �2 QHE remain robust. The last two plateaus �= �2
eventually disappear around W�3.2. For comparison, the
QHE near the lower band edge is shown in the inset, where
all plateaus disappear at a much weaker disorder strength
W�1.0. This clearly indicates that under the same condi-
tions, the unconventional QHE around the band center is
much more stable than the conventional QHE near the band
edges. Clearly, after the destruction of the conventional QHE
states near the band edge, these states become localized.
Then the topological Chern numbers initially carried by
these states will move towards band center in a similar man-
ner to the single-layer graphene case.13 Thus we observe that
the destruction of the unconventional QHE states near the
band center is due to the float-up of extended levels.

To study the fate of the IQHE at weak magnetic field
limit, we reduce the strength of magnetic field. In Fig. 4, the
Hall conductivities around the band center with weaker mag-
netic flux �=2� /96, 2� /192, and 2� /288 are shown for
different disorder strengths and system size N=96�24�2.

FIG. 3. �Color online� Unconventional Hall conductivity as a
function of electron Fermi energy near the band center for four
different disorder strengths each averaged over 400 disorder con-
figurations. Inset: conventional Hall conductivity near the lower
band edge. Here, �=2� /48 and the sample size is N=96�24�2.

FIG. 4. �Color online� Calculated Hall conductivity with weaker magnetic flux �=2� /96, 2� /192, and 2� /288 for four different
disorder strengths each averaged over 400 disorder configurations. Here, the sample size is N=96�24�2.
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In Fig. 4�a�, a lot more well quantized Hall plateaus emerge
for a clean sample �W=0�, if we compare them with the
results in Fig. 2�b�. In Figs. 4�b�–4�d�, we can see that with
the increase in the disorder strength W, Hall plateaus are
destroyed faster for the system with weaker magnetic flux �.
At W=2.0, the most robust Hall plateaus at �= �2 remain
well quantized for magnetic flux �=2� /96 and 2� /192,
however, they already disappear for weaker magnetic flux
�=2� /288. Our flux 2� /M in each hexagon the magnetic
field is B�1.3�105 /M T.22 Thus, the weakest B we used is
about 451 T. This is a very large magnetic field comparing to
the experimental ones around B�40 T. However, the topol-
ogy of the QHE and how they disappear with the increase in
the disorder strength W remain to be the same as the stronger
B cases as demonstrated in Fig. 4�a�–4�d�. Thus, we establish
that the obtained behavior of QHE for bilayer graphene will
survive at weak B limit.

We further investigate the quantum phase transition of the
bilayer graphene electron system. In order to determine the
critical disorder strength Wc for the different QHE states, the
Thouless number g is calculated by using the following
formula:15

g =
E

dE/dN
.

Here, E is the geometric mean of the shift in the energy
levels of the system caused by replacing periodic by antipe-
riodic boundary conditions, and dE /dN is the mean spacing
of the energy levels. The Thouless number g is proportional
to the longitudinal conductance G. In Fig. 5, we show some
examples of calculated Thouless number for a relatively
weak flux �=2� /48 and some different disorder strengths to
explain how quantum phase transitions and the related phase

boundaries Wc are determined. In Fig. 5�a�, the calculated
Thouless number g and Hall conductivity 
xy as a function of
Ef at a weak disorder strength W=0.2 are plotted. Clearly,
each valley in Thouless number corresponds to a Hall pla-
teau and each peak corresponds to a critical point between
two neighboring Hall plateaus. We can also call the first val-
ley just above �below� Ef =0 the �=−2 ��=2� QHE state, the
second one the �=−4 ��=4� state, and so on, as same as the
Hall plateaus. In Figs. 5�b�–5�d�, we see that with increasing
W, higher QHE states �valleys� are destroyed first. At W
=Wc=1.0 �see Fig. 5�b�	, the valleys with �= �12 disappear,
which correspond to the destruction of the �= �12 Hall pla-
teau states. Therefore, Wc=1.0 is the critical disorder
strength, at which the �= �12 plateau states change to an
insulating phase. At W=Wc=1.3 �see Fig. 5�c�	, the valleys
with �= �8 disappear, which indicates the destruction of the
�= �8 QHE states and their transition into the insulating
phase. When W=Wc=3.2 �see Fig. 5�d�	, the most stable
QHE states with �= �2 eventually disappear, which indi-
cates all QHE phases are destroyed by disorder. All the phase
boundaries Wc between the different QHE states are deter-
mined in the same manner and tabulated in Table I.

We now focus on the region around Ef =0. In Fig. 6, we
show the Thouless number for some different disorder
strengths at system size N=96�24�2 and magnetic flux

FIG. 5. �Color online� �a�–�c� Calculated Thouless number and
Hall conductivity for three different disorder strengths, and �d�
Thouless number for other three disorder strengths, each data point
being averaged over 400 disorder configurations. Here, �=2� /48
and the sample size are taken to be N=96�48�2 and N=96
�24�2 in the calculations of Thouless number and Hall conduc-
tivity, respectively.

TABLE I. The phase boundaries Wc for the different Hall
plateaus.

Hall plateaus index
critical point Wc

�= �12 1.0

�= �10 1.2�0.1

�= �8 1.3�0.1

�= �6 1.6�0.1

�= �4 1.7�0.1

�= �2 3.2

FIG. 6. �Color online� �a� Thouless number for five different
disorder strength, each point being averaged over 400 disorder con-
figurations. Here, �=2� /48 and the sample size is N=96�48�2.
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�=2� /48. We can see that the Thouless number shows a
central peak at Ef =0. With increasing the disorder strength,
the width of the peak increases and its height remains nearly
unchanged. This behavior may suggest an interesting effect
that the extended states originally sited at the critical point
Ef =0 splits in the presence of disorder. However, the split-
ting is too small to induce two separated peaks in the Thou-
less number for the present sample sizes we can approach.
Instead, it leads to a widened peak of unreduced height. This
behavior also indicates that the critical longitudinal conduc-
tance in a small finite region near Ef =0 is almost constant
about 2e2 /h according to the proportionality of Thouless
number to longitudinal conductance. We have also confirmed
this conclusion by direct Kubo formula calculation, in which
the system size that can be approached is, however, much
smaller.

IV. SUMMARY

In summary, we have numerically investigated the QHE
in bilayer graphene based on tight-binding model in the pres-
ence of disorder. The experimentally observed unconven-
tional QHE is reproduced near the band center. The uncon-
ventional QHE plateaus around the band center are found to
be much more stable than the conventional ones near the
band edges. Our results of quantum phase transition indicate
that with increasing disorder strength, the Hall plateaus can
be destroyed through the float-up of extended levels toward
the band center and higher plateaus always disappear first. At
W=Wc=3.2, the most stable QHE states with �= �2 even-
tually disappear, which indicates transition of all QHE
phases into the insulating phase. A small critical region is
observed between the �= �2 plateaus, where the longitudi-

nal conductance remains almost constant about 2e2 /h in the
presence of moderate disorder, possibly due to the splitting
of the critical point originally sited at Ef =0. We mention that
in our numerical calculations, the magnetic field is much
stronger than the ones one can realize in the experimental
situation, as limited by current computational ability. How-
ever, the phase diagram we obtained is robust and applicable
to weak field limit since it is determined by the topological
property of the energy band as clearly established for single-
layer graphene13 and conventional quantum Hall systems.14

We further point out that the continuum model can not be
used to address the fate of the quantum Hall effect in strong
disorder or weak magnetic field limit. Because in such a
model, both the band bottom and band edge are pushed to
infinite energy limit, and thus one will not be able to see the
important physics of opposite Chern numbers annihilating
each other to destroy the IQHE.13
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